

ABI-4334, a Novel Inhibitor of Hepatitis B Virus Core Protein, Disrupts DL-DNA Containing Capsids and Prevents HBV DNA Integration

Lewyn Li, Katie Kitrinos, William Delaney, <u>Nuruddin Unchwaniwala</u>

Assembly Biosciences, Inc., South San Francisco, CA, USA

Presented at the 2023 International HBV Meeting, September 19–23, 2023, Kobe, Japan (Session IX: Integration, Pathogenesis, and HCC [September 22, 2023])

©2023 ASSEMBLY BIOSCIENCES, INC.

Presenter Disclosures

• Nuruddin Unchwaniwala is an employee and stockholder of Assembly Biosciences, Inc.

Two Forms of HBV DNA Can Enter the Nucleus Upon Infection

- 1) Peneau C, et al. Gut.2022 Mar;71(3)616-626
- 2) van Buuren N, et al. JHEP Rep. 2022;4(1):100388.
- *3)* Salpini R, et al. Front. Microbiol. 2022;13:972687.
- 4) Ramirez R, et al. J Virol. 2021;95(19):e00299-21.
- 5) Jiang Z, et al. Genome Res. 2012;22(4):593-601.

Two Forms of HBV DNA Can Enter the Nucleus Upon Infection

Two Forms of HBV DNA Can Enter the Nucleus Upon Infection

Experiment to Evaluate Impact of ABI-4334 on DL-DNA Capsids

6

ABI-4334 Disrupts DL-DNA–Containing Capsids

Southern blot, (+)DNA probe

ABI-4334 Disrupts DL-DNA–Containing Capsids

Southern blot, (+)DNA probe

Experimental Design to Evaluate Impact of ABI-4334 on Integration via Inverse PCR (invPCR)

InvPCR Shows That ABI-4334 Can Inhibit HBV DNA Integration

	Condition	# PCR bands	# Integrants	HBV breakpoint	Int. frequency ^a
	Uninfected	0	0	ND	ND
	Untreated	54	4 (chr 6, 8,14, and 16)	nt1806, nt1825, nt1785, nt1624-nt1700	4x10 ⁻⁵
	200 nM Myrcludex B	2	0	ND	ND
	2.4 μM ABI-4334	28	0	ND	ND

^aBased on 500 ng total DNA screened (~50,000 cells). ND, not detected.

Experimental Design to Evaluate Impact of ABI-4334 on Integration via HBV Enrichment and NGS

Reproduced from Ramirez R, et al. J Virol. 2021;95(19):e0029921.

ABI-4334 Prevents HBV Integration in a Dose-Proportional Manner

Statistics: unpaired t-test. *p-value<0.05; ***p-value<0.001. ns, not significant.

HBV Integration Breakpoints Mapped Throughout the Human Genome

Summary

- HBV integration is a driving mechanism of oncogenesis
- ABI-4334, a highly potent, next-generation capsid assembly modulator, disrupts RC- and DL-DNA- containing capsids
- ABI-4334 inhibits HBV DNA integration as shown by invPCR and NGS analyses
- Plasma levels of ABI-4334 required to inhibit integration are achievable based on Phase 1a PK data¹
- ABI-4334 has potential to lower long-term risk of developing HCC by preventing HBV integration

Acknowledgments

- Writing and editorial support were provided by Sylvia Stankov, PhD, of AlphaBioCom, a Red Nucleus company, and were funded by Assembly Biosciences, Inc.
- This study was sponsored by Assembly Biosciences, Inc.