Preclinical Characterization of ABI-1179, a Potent Helicase Primase Inhibitor for the Treatment of Recurrent Genital Herpes

Aesop Cho¹, Varsha Nair¹, Lindsey May¹, Pui Yan Ho¹, Xiaolin Zhang¹, Kelly Wang¹, Judy Mwangi¹, Ariel Lewis-Ballester¹, Emma Abernathy¹, Fernando J. Bravo³, David I. Bernstein³, Qing Yao¹, Heidi Contreras², Ran Yan², Annapurna Sapre¹, Arabinda Nayak¹, Christopher Richards¹, Hamed Ghaffari¹, Ting Wang¹, Roberto Mateo¹, Meghan M. Holdorf¹, Simon P. Fletcher¹, Alexandre Mercier¹

¹Gilead Sciences, Inc., Foster City, CA, USA; ²Assembly Biosciences, Inc., South San Francisco, CA, USA; ³Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA

Introduction

- Recurrent genital herpes (RGH) is a sexually transmitted disease caused predominantly by herpes simplex virus type 2 (HSV-2)^{1,2}
- People living with RGH can suffer from painful recurring genital ulcers and psychological distress^{1,2}
- Current standard-of-care (SOC) treatment is limited to nucleoside analogues (NAs; eg, acyclovir), which are only partially effective in preventing recurrences and require daily dosing^{3,4}
- Targeting the HSV helicase-primase (HP) enzyme complex is a clinically validated mechanism (pritelivir) capable of further reducing HSV shedding rates and lesions compared with SOC^{5,6}

Results

Figure 1. ABI-1179 Potently Inhibits the DNA Unwinding Activity of the HSV HP Complex

		IC ₅₀ (nM)		K _{i, app} (nM)	
	Compound	HSV-1	HSV-2	HSV-1	HSV-2
-	ABI-1179	0.17 ± 0.05	0.16 ± 0.07	0.03 ± 0.02	0.03 ± 0.01
	Pritelivir	11 ± 3	30 ± 6	5 ± 1	8 ± 0

Data are mean \pm SD. IC₅₀s for ABI-1179 are near the assay's lower limit. IC₅₀, half-maximal inhibitory concentration; K_{i, app}, inhibitor constant, apparent; SD, standard

• ABI-1179 is a highly potent inhibitor of HSV-1 and HSV-2 HP complexes (K_{i, app} <0.05 nM) compared with pritelivir (K_{i, app} 5–8 nM; Figure 1)

Figure 2. ABI-1179 Demonstrates Low

Figure 5. ABI-1179 Has a High Barrier to Resistance In Vitro

A. Dose-Escalation Summary for HSV-1 and HSV-2

Figure 7. ABI-1179 Has a Favorable Oral PK Profile in Preclinical Species, Which Supports Once-Weekly Oral Dosing

A. ABI-1179 Plasma Exposure in Preclinical Species

- ABI-1179 is a promising long-acting oral HP inhibitor (HPI) with potent anti-HSV activity
- HP enzyme complex:

Methods

- Helicase unwinding assay:
- Recombinant UL5/UL52/UL8 from HSV-1 and HSV-2 (UL8 from HSV-1) was incubated at room temperature with fluorescently labeled forked DNA substrate in the presence or absence of compound. Reactions were initiated by the addition of ATP. IC_{50} s were determined by measuring the reduction in fluorescence signal • HSV and clinical isolate antiviral assays:
- -Retinal epithelial (ARPE-19), human keratinocyte (HaCat), and neonatal human dermal fibroblast (NHDF) cells were infected with either HSV-1 or HSV-2 and treated with compound. HSV DNA EC₅₀s were measured by qPCR using gene-specific primers

Potential for Off-Target CA Inhibition

	CO ₂ Hydratase IC ₅₀ (nM)	
Compound	CAI	CAII
ABI-1179	>100,000	6600 ± 750
Pritelivir	451 ± 170	1800 ± 194
Acetazolamide ^a	354 ± 54	15 ± 2

The data are mean ± SD of at least 3 independent experiments done with 10 replicates. Assay positive control; acetazolamide is a well-known CA inhibitor and contains sulfonamide pharmacophore

- IC₅₀, half-maximal inhibitory concentration; SD, standard deviation.
- ABI-1179 does not inhibit CAI, whereas pritelivir inhibits CAI with an IC_{50} of 451 nM (**Figure 2**)
- ABI-1179 also displays weaker CAII inhibition than pritelivir (**Figure 2**)
- Inhibition of CAs is not anticipated at the projected human efficacious dose

Figure 3. ABI-1179 Is a Potent Inhibitor of HSV-1 and HSV-2 Laboratory Strains

Virus (Strain)	Compound	ARPE-19 EC ₅₀ (nM)	HaCat EC ₅₀ (nM)	NHDF EC ₅₀ (nM)
HSV-1	ABI-1179	0.95 ± 0.15	-	-
(KOS)	Acyclovir	2410 ± 390	-	-
HSV-2	ABI-1179	1.07 ± 0.30	1.27 ± 0.13	0.89 ± 0.23
(MS)	Acyclovir	3620 ± 1400	224 ± 80	161 ± 24

Data are mean ± SD. ARPE-19, human retinal epithelial cells; EC₅₀, half-maximal effective inhibitory concentration; HaCat, human keratinocytes; NHDF, neonatal human dermal fibroblasts; SD, standard deviation.

• ABI-1179 has potent antiviral activity against HSV-1 and HSV-2 replication in ARPE-19 cells. Similar potency is observed in other physiologically relevant cell lines (**Figure 3**)

Time (h)

B. Rat and Human Plasma Protein Binding

Species	%Free in Plasma (n=3)	<i>In Vitro</i> ³ H Hepatocyte Clearance (L/h/kg)	<i>In Vivo</i> Blood Clearance (L/h/kg)	Restriction Factor
Rat	0.34 ± 0.07	0.950 ± 0.087	0.139	6.8
Human	0.24 ± 0.04	0.051 ± 0.005	(0.0053)	(9.6)

Data are mean ± SD for plasma concentration, %free in plasma, and *in vitro* clearance; mean for *in vivo* clearance. Parentheses ndicate projected value. Plasma free fraction data were generated with Dianorm equilibrium dialysis device. Cyno, cynomolgus monkey; restriction factor, ratio of the in vitro predicted clearance to the observed in vivo clearance; SD, standard deviation

- In vivo systemic clearance is lower than in vitro predicted clearance in nonclinical species (**Figure 7A**)
- ABI-1179 shows a similar unbound fraction between rat and human plasma; therefore, the restriction factor observed in rats is used for human PK projections (**Figure 7B**)
- A once-weekly 250-mg dose of ABI-1179 is projected to achieve efficacious coverage in humans

Figure 8. ABI-1179 Reduces the Number of HSV Lesions in the Guinea Pig Model of Recurrent HSV Infection

A. In Vivo Efficacy Timecourse

B. Cumulative Mean Lesion Score in Guinea Pig Model

20

Time in Tissue Culture (Days)

30

B. Genotyping of HSV-1 and HSV-2 From **Resistance Selection**

HSV-1				
ABI-1179 22 Days (128× EC ₅₀)	Pritelivir 24 Days (48× EC ₅₀)	DMSO 20 Days		
K356N (>99%) S498N (>99%)	S498N (29.5%) V662I (72.8%)	- V662I (25.1%)		
HSV-2				
ABI-1179 16 Days (32× EC ₅₀)	Pritelivir 18 Days (32× EC ₅₀)	DMSO 20 Days		
-	K355R (14.5%)	-		
	HS ABI-1179 22 Days (128× EC ₅₀) K356N (>99%) S498N (>99%) MS ABI-1179 16 Days (32× EC ₅₀) -	HSV-1 ABI-1179 Pritelivir 22 Days (128 × EC ₅₀) 24 Days (48 × EC ₅₀) K356N (>99%) S498N (29.5%) S498N (>99%) S498N (29.5%) V662I (72.8%) V662I (72.8%) ABI-1179 Pritelivir 16 Days (32 × EC ₅₀) 18 Days (32 × EC ₅₀) - K355R (14.5%)		

In Panel A, frequencies of variants detected in ABI-1179– and pritelivir-treated cultures (≥15%) are indicated in parentheses. In Panel B, variant frequency (%) is compared with unpassaged virus. DMSO, dimethyl sulfoxide; EC_{50} , half-maximal effective inhibitory concentration.

• ABI-1179 has a higher barrier to resistance for both

- Viral resistance determination:
- Vero cells infected with HSV-1 or HSV-2 were treated with escalating doses of compound until presence of full cytopathic effect (CPE). The cells and supernatant were processed for deep sequencing using gene-specific primers
- Phenotypic assessment of resistant mutations:
- -A bacmid encoding HSV-2 MS strain with an mCherry reporter was used to generate mutant constructs via *en passant* mutagenesis.⁷ Cellular mCherry signal was used to determine $EC_{50}s$ following infection of ARPE-19 cells with recombinant viruses
- Carbonic anhydrase (CA) hydratase assay:
- The potency of ABI-1179 against CAI and CAII was determined in an absorbance-based assay monitoring the CO₂ hydratase activity of the CA as previously described⁸
- *In vivo* efficacy study:
- -Guinea pigs were vaginally infected with HSV-2, and acute disease was allowed to resolve. At 14 days post-infection, animals were given chow formulated with ABI-1179 (0.04% weight/weight) or left untreated (15 animals per group). Animals were examined for genital skin disease and scored 5 days a week throughout the study

• ABI-1179 is >2500-fold more potent than acyclovir in ARPE-19 cells against HSV-1 and HSV-2, and >150-fold more potent against HSV-2 in HaCat and NHDF cells

Figure 4. ABI-1179 Is a Potent Inhibitor of HSV-1 and HSV-2 Clinical Isolates

denotes the number of clinical isolates tested. Each point represents an individual isolate and the horizontal line depicts the median EC₅₀ across all clinical isolates tested. EC₅₀, half-maximal effective inhibitory concentration.

• ABI-1179 is active against HSV-1 and HSV-2 clinical isolates, including those with reduced susceptibility to acyclovir (**Figure 4**)

• ABI-1179 is >12-fold more potent than pritelivir against HSV-1 and HSV-2 clinical isolates and

HSV-1 and HSV-2 populations passaged in Vero cells compared with acyclovir (**Figure 5A**)

• The K356N and S498N variants of HSV-1 UL5 are present at the highest ABI-1179 passage concentration tested (128-fold EC₅₀; **Figure 5B**) • For HSV-2, there are no variants in target genes UL5 and UL52 at the highest concentration of ABI-1179 tested (32-fold EC_{50}) that produced CPE (**Figure 5B**) • Resistance selection data suggest that ABI-1179 binds at the UL5/UL52 interface, consistent with Cryo-EM structure data (not shown)

Figure 6. ABI-1179 Is More Resilient to Binding Site Variations than Pritelivir

netructe	EC ₅₀ (nM) [Fold Change From Wild Type]		
ארועכוס	ABI-1179	Pritelivir	
ild type	0.9	8.2	
_52 A906V	2.3 [3]	377 [46]	
_5 K355N	268 [306]	>2000 [>243]	
_5 K355T	10.7 [12]	562 <mark>[68]</mark>	
_5 K355R	2.2 [3]	319 <mark>[39]</mark>	
_5 L805I	1.4 [2]	22.2 [3]	
_5 S497N	2.4 [3]	22.5 [3]	
_5 K355R + UL5 L805I	>1000 [>1111]	>122,000 [>14,878]	
_5 K355R + UL5 L805I UL52 A906V	>64,000 [>71,111]	>122,000 [>14,878]	
_5 K355N + UL5 S497N	>64,000 [>71,111]	>122,000 [>14,878]	

EC₅₀, half-maximal effective inhibitory concentration; UL5, helicase; UL52, primase.

• Phenotypic assessment of UL5-K355 helicase variants, including those identified in vitro and in the clinic, reveals modest potency shifts for ABI-1179

PK sampling at 21, 49, 77, and 105 days post-infection. ABI-1179 (0.04% weight/weight) plasma concentrations remain 8-fold greater than the guinea pig protein-adjusted EC_{95} (133 nM). EC₉₅, 95% effective inhibitory concentration.

• Following latency establishment, ABI-1179 significantly reduces the development of lesions in a guinea pig model of recurrent HSV infection when treated with formulated chow at therapeutically relevant concentrations (**Figure 8**)

Conclusions

- ABI-1179 targets the HSV helicase-primase complex and is a potent inhibitor of HSV replication across clinical isolates or laboratory strains with a high barrier to resistance
- In a preclinical model of HSV recurrent disease, ABI-1179 significantly reduces the number of HSV lesions

ACKNOWLEDGEMENTS

- ABI-1179 demonstrates a favorable PK profile with a projected human oral dose of 250 mg, once weekly
- A Phase 1a/1b first-in-human study with ABI-1179 is planned to start in the second half of 2024

REFERENCES

disease

